Кипение воды при повышенном давлении


Кипение и испарение воды. Зависимость температуры кипения от давления

Вода и водяной пар как рабочее тело и теплоноситель получил широкое использование в теплотехнике. Это объясняется тем, что вода является очень распространенным веществом в природе; и второе – вода и водяной пар имеют относительно хорошие термодинамические свойства и не влияют вредно на металл и живой организм. Пар образовывается из воды испарением и кипением.

Испарением называется парообразование, которое происходит только на поверхности жидкости. Этот процесс происходит при любой температуре. При испарении из жидкости вылетают молекулы, которые имеют относительно большие скорости, вследствие чего уменьшается средняя скорость движения молекул, которые остались, и уменьшается температура жидкости.

Кипением называется бурное парообразование по всей массе жидкости, происходящее при передаче жидкости через стенки сосуда определенного количества тепла.

Температура кипения зависит от давления, под которым находится вода: чем больше давление, тем выше температура, при которой начинается кипение воды.

Например, атмосферному давлению 760 мм.рт.ст. соответствует tк =100 о С, чем больше давление, тем выше температура кипения, чем меньше давление, тем меньше температура кипения воды.

Если кипение жидкости происходит в закрытом сосуде, то над жидкостью образовывается пар, который имеет капельки влаги. Такой пар называется влажным насыщенным . При этом температура влажного пара и кипящей воды одинаковая и равна температуре кипения.

Если постоянно беспрерывно подавать тепло, то вся вода, включая мельчайшие капли, превратится в пар. Такой пар называется сухим насыщенным.

Температура сухого насыщенного пара также равна температуре кипения, которая отвечает данному давлению.

Отделение частичек воды от пара называется сепарацией, а устройство, предназначенное для этого – сепаратором .

Переход воды из жидкого состояние в газообразное называется парообразованием, а с газообразного в жидкое – конденсацией.

Пар бывает насыщенный и перегретый. Величина, определяющая количество сухого насыщенного пара в 1кг влажного пара в процентах называется степенью сухости пара и обозначается буквой Х (икс). Для сухого насыщенного пара Х=1. Влажность насыщенного пара в паровых котлах должна быть в пределах 1-3%, то есть степень ее сухости Х=100-(1-3)=99-97%.

Пар, температура которого для определенного давления превышает температуру насыщенного пара, называется перегретым. Разность температур между перегретым и сухим насыщенным паром при этом же давлении называется перегревом пара.


6. Основные понятия о гигиене труда, об утомляемости.

Задачи производственной санитарии – это обеспечение наиболее благоприятными условиями труда работающих путем ограждения здоровья трудящихся от воздействия вредных производственных факторов.

К вредным производственным факторам относятся: шум, вибрация, запыленность помещений, загрязненность воздушной среды, наличие токсичных веществ, плохая освещенность рабочих мест, высокая температура в цехах и др.

Все эти перечисленные вредные факторы отрицательно сказываются на здоровье человека.

Личная гигиена на здоровье человека влияет положительно. Она укрепляет организм работающих и повышает их сопротивляемость воздействию нездоровых и вредных факторов. Для этого работающие должны выполнять санитарные нормы и правила. Правильно пользоваться спецодеждой, спецобувью, душем, индивидуальными защитными средствами. Содержать в чистоте и в порядке инструмент и рабочее место. Соблюдать рациональный режим труда, отдыха и режим питания. Регулярно заниматься физкультурой и разнообразными видами летнего и зимнего спорта, что делает организм здоровым и выносливым, так как закаленный спортом организм легко преодолевает болезни, неблагоприятное воздействие внешней среды, в том числе и производственных факторов.

studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам

Влияние температуры и давления на состояние хладогенов

Соотношение между температурой и давлением является одним из основных факторов, определяющих состояние хладагента как в испарителе, так и в конденсаторе, а также в обычной емкости с хладагентом. Ниже приведены более подробные объяснения влияния температуры и давления на состояние хладагента.

Кипение воды при понижениидавления

Мы знаем, что для доведения воды до кипения при атмосферном давлении достаточно нагреть её до 100°С.
Вместе с тем, при вакуумировании холодильного контура с целью его обезвоживания, вода, которая может находиться в контуре, имеет температуру окружающей среды, то есть гораздо ниже 100°С.
С помощью простого опыта, схема которого приведена на рис. 1.1, можно показать действие вакуумирования на процесс закипания воды:

Пусть прозрачная емкость с водой, например, при температуре 30°С соединена с атмосферой, то есть находится при атмосферном давлении. Видно, что вода неподвижна и не кипит. Однако при подключении емкости к мощному вакуумному насосу после начала вакуумирования можно заметить, что вода начинает закипать, хотя её температура составляет только 30°С. Это явление может быть объяснено следующим образом:

  • Поверхность воды находится под действием двух сопряженных сил, которые направлены друг против друга (см. рис. 1.2).
  • Первая сила F, — внутренняя сила в жидкости, направленная снизу вверх и стремящаяся вытеснить воду из сосуда.
  • Вторая сила Fe — наружная сила, которая, напротив, стремится удержать воду внутри сосуда.

До тех пор, пока противоположно направленные силы FI и Fe уравновешены, они взаимно нейтрализуются и в сосуде ничего не происходит.

Вакуумирование вызывает кипение воды:
Потому что понижает давление над жидкостью и тем самым уменьшает силу Fe.
Следовательно, когда в результате вакуумирования сила Fe становится меньше силы Fi, вода не может оставаться внутри сосуда и начинает выходить из него в виде пара: вода кипит (испаряется).

Подогрев воды также вызывает её кипение:
Поскольку одновременно увеличивает внутреннюю силу Fi действующую в жидкости.
Точно также, когда в результате подогрева сила Fi становится больше силы Fe, наружная сила не может больше удерживать воду в сосуде и начинается её испарение.

* Прим.ред. Модель процесса кипения, приведенная автором, не является строго научной, но помогает в доступной форме объяснить процессы кипения и конденсации.

Итак, чтобы вызвать кипение жидкости, достаточно либо повысить внутреннюю силу (подогревая жидкость), либо понизить внешнее давление над её свободной поверхностью (вакуумируя сосуд).

Как вызвать кипение воды поливая сосуд холодной водой

В предыдущем эксперименте мы вскипятили воду, вакуумируя сосуд и нарушая тем самым равновесие между силами Fi] и Fe. Когда вода полностью закипит, закроем изолирующий вентиль сосуда на выходе из него (см. рис. 1.3). Кипение полностью прекращается.

Это объясняется тем, что молекулы пара, образующиеся в процессе кипения жидкости, скапливаясь над её поверхностью, поднимают давление в сосуде.
Когда подъем давления становится достаточным для установления нового состояния равновесия между силами Fe и Fi кипение сразу же останавливается. Однако будучи прекращенным, кипение начинается с новой силой, если сосуд поливать холодной водой.

Это явление, на первый взгляд крайне парадоксальное, объясняется тем, что небольшая масса водяных паров, содержащихся в емкости, охлаждается значительно быстрее, чем большая масса воды.
В результате пары воды сжимаются сильнее, чем жидкость, и внешняя сила Fe (действующая в паровой фазе) уменьшается быстрее, чем внутренняя сила Fi (действующая в жидкости).
Когда сила Fe становится ниже силы Fi, их равновесие нарушается, и кипение естественно возобновляется (этот легко осуществимый эксперимент, который позволил автору выиграть множество пари, может быть поставлен с помощью прибора, известного под названием колбы Франклина).

Разница в удельной массе жидкости и её пара

Говоря об удельной массе тела, укажем, что под этим понятием подразумевается масса единицы объема данного тела (например, мы знаем, что 1 литр воды имеет массу 1 килограмм).
Для R22 1 литр жидкости при температуре 20°С имеет массу около 1,2 килограмма, однако 1 литр паров R22 при той же температуре и атмосферном давлении имеет массу порядка 0,038 кг, то есть в 1,2/0,038=31 раз меньшую.

Следовательно при 20°С и атмосферном давлении 31 литр паров R22 имеет такую же массу, как 1 литр жидкости R22 (см. рис. 1.4).

Таким образом, в результате испарения жидкого R22 при 20°С образующиеся пары занимают объем, в 31 раз больший, чем объем жидкости, из которой они образовались.
Поэтому диаметр жидкостных линий в холодильных контурах всегда меньше, чем диаметр патрубков нагнетания, хотя давления в этих двух магистралях почти одинаковы.

Соотношение между давлением и температурой:

Холодильные манометры, которые мы обычно используем, показывают соотношение между давлением паров и температурой для 3-х типов хладагентов, наиболее часто используемых в последние годы (R12, R22 и R502). Однако в дальнейшем мы будем должны все больше и больше привыкать к новым хладагентам (R134a, R404A и т. п. ).

С целью закрепления наших знаний в области поведения хладагентов при разных температурах рассмотрим рис. 1.5 и попробуем представить, что происходит внутри сосуда, содержащего R22 в жидкой фазе, когда его температура растет:
В первом сосуде жидкий R22 находится при температуре 20°С и манометр показывает, что давление в емкости составляет 8 бар.
Если температура возрастает, небольшое количество жидкости испаряется, что приводит к понижению уровня жидкости в сосуде и небольшому приросту объема паров.

Однако, принимая во внимание то, что для размещения объема паров, образовавшихся в результате испарения некоторого объема жидкости, требуется пространство, примерно в 30 раз большее, чем объем, который занимала испарившаяся жидкость, пары в сосуде сжимаются и давление в нем повышается по мере того, как растет температура.

Поэтому во втором сосуде, температура которого составляет 27°С, манометр показывает давление 10 бар.
Если температура продолжает расти и доходит, например, до 34°С, количество паров увеличивается гораздо более быстро, чем понижается уровень жидкости, и давление в нашем случае достигает 12,2 бар.

Таким образом, при росте температуры жидкости внутренняя сила Fi, увеличивается, что приводит к испарению необходимого количества жидкости.
Высвобождающийся за счет этого объем оказывается слишком малым для образовавшегося количества паров, происходит их сжатие, давление растет, одновременно растет внешняя сила Fe и так до тех пор, пока не установится равновесие сил Fe и Fi.
Итак, в замкнутом сосуде состояние смеси паров с порождающей их жидкостью (их называют насыщенными парами или парожидкостной смесью в состоянии насыщения) подчиняется очень точному соотношению (зависящему от природы жидкости) между температурой жидкости и давлением насыщенных паров.

Выписка из учебного пособия: Практическое руководство по ремонту холодильных установок с конденсаторами воздушного охлаждения Перевод с французского В.Б.Сапожникова, Техническая редакция В.И.Велюханова. Издательство Московского университета.

Нужна помощь?

Вода, нагретая на уровне моря до 100°С (212°F), начинает кипеть. Это означает, что внутри объема жидкости происходит образование пузырьков водяного пара и подъем их к поверхности. Вода закипает, потому что при данной температуре давление насыщения водяного пара слегка превышает атмосферное давление.

На больших высотах над уровнем моря атмосферное давление существенно уменьшается и вода кипит при более низких температурах. И наоборот, если давление над жидкостью увеличивается, например, когда вода находится ниже уровня моря или в скороварке, кипение происходит при более высокой температуре. Иллюстрация под текстом показывает температуры кипения на различных высотах над уровнем моря.

Фактор тепла и высоты

Ближний график справа показывает взаимосвязь между давлением насыщенного пара и температурой. При высоких температурах давление насыщенного пара быстро растет. Вода закипает, когда давление насыщенного пара начинает слегка превышать атмосферное давление. Именно поэтому при падении атмосферного давления уменьшается и температура кипения. На дальнем графике справа приведена зависимость температуры кипения воды от высоты над уровнем моря. Чем больше высота, тем ниже температура, при которой вода начинает кипеть.

Кинетическая энергия

В процессе перехода воды в газообразное состояние важную роль играет кинетическая энергия (энергия движения) молекул. Когда энергетический уровень высок, многие молекулы испаряются, разрывая связи, удерживающие их в жидком состоянии. При низком давлении (верхний рисунок под текстом) молекулы приобретают достаточно энергии для формирования газовых пузырьков кипения без добавления большого количества тепла. Ближе к уровню моря необходимо больше тепла (красная стрелка на нижнем рисунке под текстом), чтобы парообразование имело место.

Уменьшение времени приготовления пищи

В скороварках, как, например, той, что показана на рисунке справа, создается постоянное повышенное давление. На уровне моря эти герметичные кастрюли увеличивают температуру кипения воды до 121 °С (250°F). Более высокая температура кипения означает, что продукты будут готовиться быстрее, экономя время.

На продольных разрезах вверху показаны механизмы скороварки, предупреждающие чрезмерное повышение давления. Все они — предохранительный клапан (левый рисунок), регулятор давления (средний рисунок) и уплотнение ободка (правый рисунок) — помогают контролировать давление путем выпуска пара в атмосферу.

Источники: http://studopedia.ru/6_151526_kipenie-i-isparenie-vodi-zavisimost-temperaturi-kipeniya-ot-davleniya.html, http://kmh.ru/stati/vliyanie-temperatury-i-davleniya-na-sostoyanie-hladogenov/, http://information-technology.ru/sci-pop-articles/23-physics/194-pochemu-v-gorakh-voda-zakipaet-bystree



Комментариев пока нет!

Поделитесь своим мнением